François Méot Collider-Accelerator Department Brookhaven National Laboratory

Large amplitude characterization of CBETA arc cell

using 3-D OPERA field maps

Contents 1 Introd

1 Introduction	3
2 Field maps	4
3 Large amplitude	10
4 Tune footprint	13
5 Transmission	14

1 Introduction

- ⋄ Two things are addressed in these slides :
 - the paraxial amplitude properties of CBETA arc cell.

This is in order essentially to make sure with tackle the next point with the correct hypotheses, namely

- large amplitude properties of CBETA arc cell.
- **⋄** The investigation aims
- to validate, or to feedback on, the cell parameters and/or OPERA outcomes,
- with the criterion that the expectations are met (tune footprint, dynamical admittance, etc.)
- \diamond The exercise, back and forth between OPERA computation and ray-tracing, including the numerous changes in the lattice parameters, has kept us busy the past $2{\sim}3$ years.

2 Field maps

- ♦ The 3D field maps of concern have been produced by Nick Tsoupas
- ♦ As field maps are used, the study is fully based on stepwise ray-tracing techniques: particles are pushed across the field map step-by-step, typically millimeter steps.
- ⋄ Two models of the cell can be used for ray-tracing :
- either a single field map comprising QF and BD
- or two separate field maps.

The latter is the case in these slides, two OPERA file that we called

"QF_v6 x=+-4p1y=+-1p4z=+-25 stp=1mm integral N35EH.table" "BD_v6 x=+-4p1y=+-1p4z=+-25 stp=1mm integral N35EH.table"

⋄ The cell magnets being short, the field along the orbits does not feature any plateau.

As a consequence it has a rich content in derivatives, as results from

$$V_1(s, x, y) = G_1(s)y - \frac{G_1^{(2)}(s)}{8}(x^2 + y^2)y + \frac{G_1^{(4)}(s)}{192}(x^2 + y^2)^2y + \dots \text{ (dipole)}$$

$$V_2(s, x, y) = G_2(s)xy - \frac{G_2^{(2)}(s)}{12}(x^2 + y^2)xy + \frac{G_2^{(4)}(s)}{384}(x^2 + y^2)^2xy + \dots$$
 (quadrupole)

♦ This is the origin of the huge reduction of the dynamical admittance, compared to that of linear magnets (slide #10) (the latter is limited as well though, a sufficient cause for that are kinematic non-linearities)

First order field derivative dB_y/ds (red) along a trajectory off-mid-plane (blue).

- ⋄ An ideal cell without any random errors (neither field not alignment) is considered.
- ♦ It does include systematic non-linearities, namely,
- (i) the multipole content intrinsic to the magnet geometry in the OPERA simulation, and
- (ii) the non-linearity content resulting from the longitudinal form factor as addressed above. Note that the latter includes all orders in x, y.
- ♦ In addition, as stepwise ray-tracing is used the kinematic nonlinearities are present in the motion, always.

• Check the positioning of the magnet with respect to the map frame (which is also the mesh frame). They are centered on the center of the field map.

 \diamond Field from QF field map file, along x=1, 2 and 3 cm. The field is symmetric wrt. s=0 plane \rightarrow magnet centered in the mesh.

♦ Field from BD field map file, along lines at various constant-x values.

The field is symmetric wrt. s=0 plane \rightarrow magnet centered in the mesh.

• Check the centering of extreme orbits (42 and 150 MeV) in QF and BD maps.

(Orbits over a 40-153 MeV range are plotted here, the design energies are colored.)

- \diamond QF : The 42 and 150 MeV orbit excursions reach ± 23.33 mm : the beam is correctly centered.
- ◇ Orbit excursion in BD magnet (centered on 0, length 12 cm).
- ♦ Field along 30 different orbits in QF and BD (40 to 153 MeV).

• Energy dependence of cell tunes (from first order mapping), from 40 MeV up to maximum stable energy (\approx 166 MeV).

• Energy dependence of orbit position (at center of long drift), path length and time of flight.

3 Large amplitude

Maximum stable invariants, for each one of the 4 design energies.

• A parenthesis concerning the "dynamical admittance". Typical behavior of hard-edge model versus realistic fields:

• A scan of the H and V dynamical admittances of a 300-cell beam line, over 40-166 MeV (this is the surface of the phase space invariant at maximum sable amplitude, respectively H and V, previous slide).

♦ The vertical bar is at 42 MeV.

- A zoom in the 40-50 MeV region.
- \diamond The A_y dip at 41+ MeV is attributed to $Q_x + 2Q_y = int$. sum resonance line, TBC! source: skew sextupole excitation (see middle and bot. Q-diagrams in slide #4).
- \diamond The A_x dip at 45- MeV is due to $3Q_x = integer$ (upright sextupole).

 \bullet Q_x and Q_y tunes in these plots are for the motion at maximum stable amplitude (*i.e.*, the tunes for the maximum invariants, previous slide).

• Because the maximum stable vertical invariant really is at large amplitude (± 2.6 cm, see left plot below), need to check that the field at such large amplitude is still correctly computed (at least, "looks realistic"), otherwise DA computations are questionable...

A 42 MeV electron is launched on maximum vertical stable invariant, and observed across BD over a few 10s of passes (that's sufficient for the electron to reach large mplitudes/fields):

y-projection of the vertical motion. Radial (left) and vertical (right) components of the field experienced. Does not look to badly computed...

4 Tune footprint

- Spreading of Qx, Qy under the effect of horizontal (dQx/dax , dQx/day) and vertical (dQy/dax, dQy/day) anharmonicities.
- ⋄ For each of the 4 design energies,
 7 invariants from paraxial to maximum stable are tracked and the tunes are computed.
- Top: case of pure H motion
- Middle: initial H + subliminal V
- Bottom: initial V + subliminal H

The solid line spans the 42-150 MeV range, case of paraxial tunes.

5 Transmission

- The focus here is on 42 MeV, the region of smaller admittance (previous slides).
- 10000 particles are launched in a wide $\epsilon_x/\pi=10^{-4}$ m, $\epsilon_y/\pi=10^{-3}$ m, geometric.
- Of these, 21% make it to the end of the 300-cell channel. This determines the H, V admittance of the 42 MeV channel, at its entrance.
 - x, x' coordinates (initial (blue) and final (red)) of the particles that make it thru, and matching ellipses. The geometrical admittance is $\epsilon_x/\pi=5.7\,10^{-5}$ m, i.e., $\epsilon_x/\pi=4.8$ mm, normalized.
 - y, y' coordinates (initial (blue) and final (red)) of the particles that make it thru, and matching ellipses. The geometrical admittance is $\epsilon_y/\pi=1.7\,10^{-4}\,\mathrm{m}$, i.e., $\epsilon_y/\pi=14.3\,\mathrm{mm}$ normalized.

Eps/pi, Beta, Alpha: 5.6998E-05 3.2938E-01 -2.5308E+00

Eps/pi, Beta, Alpha: 1.5698E-04 3.4728E-01 2.0298E+00